Mastering the Data Lifecycle

From high-throughput ETL pipelines to real-time OLAP and distributed machine learning. We build the infrastructure that powers data-driven intelligence.

The Big Data Ecosystem

Data ETL & Pipelines

Orchestrating complex workflows using Apache Airflow, Dagster, or Prefect. Moving data from source to sink with high reliability.

  • • Change Data Capture (CDC)
  • • Schema Evolution Management
  • • Backfill & Idempotency

Real-time Computing

Stream processing with Apache Flink and Spark Streaming. Sub-second latency for fraud detection and live monitoring.

  • • Event-driven Architecture
  • • Windowing & State Management
  • • Kafka / Pulsar Integration

OLAP & Data Lake

High-performance analytics with ClickHouse, StarRocks, and Doris. Modern Data Lakes using Iceberg, Hudi, or Delta Lake.

  • • Columnar Storage Formats
  • • Vectorized Execution
  • • Data Cube Materialization

The Technology Stack

Languages

  • Python (PySpark, Pandas)
  • Scala (Spark Core)
  • Java (Hadoop Ecosystem)
  • Rust (Data Fusion, Polars)
  • SQL (The Universal Language)

Machine Learning

  • PyTorch & TensorFlow
  • Scikit-learn
  • XGBoost / LightGBM
  • MLflow (Lifecycle)
  • Feature Stores (Feast)

Storage & Compute

  • HDFS / Amazon S3
  • Apache Spark / Trino
  • Elasticsearch / Solr
  • Redis (In-memory)
  • PostgreSQL (Metadata)

Ops & Cloud

  • Kubernetes (K8s)
  • Docker / Containerization
  • Terraform (IaC)
  • Prometheus & Grafana
  • CI/CD (GitHub Actions)

Curated Resources